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e Compared with Conventional Tuning, Prompt Tuning has shown much more powerful in
few-shot learning tasks

e Prompt-based tuning includes three key points: Template design, Verbalizer design
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e Compared with Conventional Tuning, Prompt Tuning has shown much more powerful in few-shot
learning tasks

e Prompt-based tuning includes three key points: Template design, Verbalizer design
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e Conventional augmentation: methods focus on constructing more instance.

e PromptDA: propose to construct instance- label pair(fuse label semantics into
augmentation)
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***  QMethod:Label Augmentation
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QLabel Augmentation:label word candidates
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QLabel Augmentation:Final Verbalizer
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Q Augmented Prompt-based Tuning
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Q Augmented Prompt-based Tuning
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Q. Prediction Transformation
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Q. Prediction Transformation

The final probability of each class:

h = max()
| Prly|2) =HPloy 2) Pt 2 Pl )
[ MLM Head
[CLS] nice movie to watch. [SEP]  Itis [MJ—\SK]

16



Final predicted class@

Q. Prediction Transformation
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QExepriment:Research Question

e RQ1 Can PROMPTDA improve the performance of few-shot prompt-based
tuning?

e RQ2 Canthe proposed Label Augmentation strategy help the target label
prediction?

e RQ3 Canthe PROMPTDA make the promptbased tuning method more stable?
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QExepriment:BaseLine Details

Majority: The label is predicted by taking the majority class in the training set
Fine-Tuning: Prediction is based on the pre-trained language model
GPT-3:In-context tuning in the zero-shot setting

EFL(Entailment as Few-Shot Learner): An entailmentbased prompt tuning framework

i Business: Sports:
Entailment head ~ Prediet il ~Entail B ‘
(Feed Forward Layer) _Notentail - Not entail
[ [CLS] [The IAU downgrade Pluto as a dwarf planet ] [ Th ] This is business news [EOS] Th ports news [EOS ]

---------------------------------------------- Label descriptions
Textual Entailment

LM-BFF:A prompt tuning model that automatically searches for demonstrations,

MLM | _ _ _
head

great (label:positive)
terrible (label:negative) o
Label mapping M())

[ [CLs] No reason to watch . It was |[MASK]|. [SEP] A funride. It was great. [SEP] The drama discloses nothing . It was terrible . [SEP] ]
Input { ——— Template — F—— Demonstration for label:positive — F———————— Demonstration for label:negative ———1

Prompt Tuning:The standard Prompt-based Tuning augmented by a simple template or
template-free 20
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QExepriment:Research Question

e RQ1 Can PROMPTDA improve the performance of few-shot prompt-based
tuning?

e RQ2 Canthe proposed Label Augmentation strategy help the target label
prediction?

e RQ3 Canthe PROMPTDA make the promptbased tuning method more stable?
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QExepriment:Data Set Detail

SST-2:Sentiment Analysis on SST-2 Binary classification
MR: The Rotten Tomatoes movie review dataset

CR: Mining-and-Summarising-Customer-Review (give positive or negative

opinions)
Subj: Movie review data set is objective or subjective
Cola: The Corpus of Linguistic Acceptability(include domain or out domain data )

MPOQA: Data-set annotated for opinions and other private states(i.e., beliefs,
emotions, sentiments, speculations, etc.)
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QExepriment:Performance

e PROMPTDA can improve the performance of few-shot prompt-based tuning(Q1)

Method SST-2 MR CR Subj ColLA MPQA SST-5
(Acc) (Acc) (Acc) (Acc) (Acc) (Acc) (Acc)

Majority (full) 50.9 50.0 50.0 50.0 69.1 50.0 23.1

Fine-Tuning (full) 95.0 90.8 894 97.0 86.2 894 58.7

Few-shot scenario with K=8

IFine-Tuning 60.5(3.1) 60.3(7.5) 619(5.1) 783(8.2) 51.1(84) 59.034) 315(7.5)1
IGPT-3 (Brown et al., 2020) 829 (34) 81.2(2.5) 86.8(1.5) 53.2(1.5) 52.1(6.2) 62.9(3.5) 315 (4.3)|
JEFL (Wang et al., 2021) 67.5(8.5) 69.8(7.5) 753(48) 789(7.8) 54.3(8.9) 68.4(5.7) 35.2(6.3)
LM:BEF (Gag etal..2021). 891 (410 83.6 (34 878(43). Bla(al) S35 (45 7393.9 _4.1.2.(3..1.)'
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QExepriment:Performance

e Automatic Label Augmentation outperforms the manual way.(Q2)

Method SST-2 MR CR Subj ColLA MPQA SST-5
(Acc) (Acc) (Acc) (Acc) (Acc) (Acc) (Acc)

Majority (full) 50.9 50.0 50.0 50.0 69.1 50.0 23.1

Fine-Tuning (full) 95.0 90.8 894 97.0 86.2 894 58.7

Few-shot scenario with K=8

° 1 template augmented:manually choose “Itis [MASK]"
° 1 template-free: only append “[MASK]"

° (au.): automatic label augmentation,this paper proposed
° (m.): manual label augmentation,find the synonyms of label name from dictionary

Prompt Tuning' 85.8(5.8) 79.3(8.2) 86.1(8.0) 81.2(57) 52.7(6.6) 75.1(13.7) 384(4.7)
[Prs PrRompTDA(m.)™ = 78890 (319) 838 (19) 849557 82499 51.33155) 781389 ~4270.0)
IPT + PROMPTDA(au.)’ 89.5(2.9) _83.7(2.6) _883(4.1) _86.8(3.1) _559(7.1) _ 78.4(9.2)_ 43.3(L6),
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QExepriment:Performance

e PROMPTDA makes the prompt-based tuning more stable (less variance).(Q3)

Method SST-2 MR CR Subj CoLLA MPQA SST-5
(Acc) (Acc) (Acc) (Acc) (Acc) (Acc) (Acc)

Majority (full) 50.9 50.0 50.0 50.0 69.1 50.0 23.1

Fine-Tuning (full) 95.0 90.8 894 97.0 86.2 894 58.7

Few-shot scenario with K=8

T template augmented:manually choose “Itis [MASK]"

1 template-free: only append “[MASK]"

Prompt Tuningt 855(5.2) 83.0(3.7) 86.5(3.0) 81.8(56) 505(10.3) 71.5(9.8) 37.5(5.5)

PT + PROMPTDA (m.)* 87.3(44) 825(1.4) 88.1(2.7) 81349 51.2(7.5) 729 (9.1) 394 (4.3)

PT + PROMPTDA (au.)* 87.6(4.1) 83.1(3.1) 87.8(1.2) 834(25) 528(8.1) 745(7.8) 41.8(3.9)

Prompt Tuning' 85.815.8)1 79.4(82) 86.1i8.0)1 81.215.7)1 52.7(6.6)1 75.1(13.7) 38.4;(71.7_),

PT + PROMPTDA (m.)" 88.91(3.9)] 83.§(1.9)] 84.91(5.7)] 824199 | S51.3¢15.5) 78.1 8.9)I 427 (7.1)I

PT + PROMPTDA (au.)! 89.512.9), 83.7(2.6); 88.3(4.1); 86.8(3.1); 55.9(7.1), 784 '(22_). 43.3 '(_16_).
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QExpriment:Combine Conventional DA

Method SST-2 MR CR Subj SST-5
(Acc) (Acc) (Acc) (Acc) (Acc)
Pl 85.8(5.8) 79.3(8.2) 86.1(8.0) 81.2(5.7) 38.44.7)
PT with Conventional DA 89.2(1.3) 803(3.1) 86.5(4.5) 82.3(8.0) 39.14.5)
LPLTwith PROMPTDA. . _ _ . — - — 895 2.9 _83.7(26). 83341 _868.03.1D _ 43.3(L6).

| PT with PROMPTDA & Conventional DA 89.7 (1.6) 84.8(1.5) 89.2(1.3) 87.0(3.1) 44.7(1.1) |

e Combination with conventional DA can bring additional improvements,
which suggests PROMPTDA can be regarded as orthogonal to conventional DA

e Conventional DA:Select synonym substitution method
e Enlarge the training set by x2

e PROMPT DA :This paper propose
e Enlarge the training set by %3
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QExepriment:Label Word Selection

e SST-2: The label words automatically manually searched are literally similar.

: label name positive | negative

ISST-2 label words (m.) positive, great, good | negative terrible bad

label words (au.) wonderful brilliant fantastic | terrible done disappointing

Key word is literally same




QExepriment:Label Word Selection

e Subj :the label name {objective/subjective}, not literally similar.
computer don’t know what is the object & subject word

label name objective | subjective

:Subj label words (m.) good neutral fair | bad emotional personal

label words (au.) disturbing terrifying key | bad not nonsense

Hard to look not literally similar but synonyms similar




QExepriment:Label Word Selection

SST-5: harder to select appropriate label words(Performance bad)

Hard to split out neutral ,negative and very negative

label name very positive | positive | neutral | negative | very negative |
£ LI tul

label words (m.) great perfect ex;e ent | good, pretty, wopder ul | o |

neutral normal fine | bad worse not | terrible awful ridiculous I

Iy

label words (au.)

great brilliant fantastic | extraordinary remarkable fascinating
enough terrible funny | awful bad worse | boring done unnecessary I
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QcConclusion

e A new problem of designing data augmentation strategies for
prompt-based few-shot learners.

e Label-guided data augmentation framework PROMPTDA that exploits the
rich label semantic information of one-to-multiple verbalizer for improving
prompt tuning, which can be a plug-in module for any prompt-based
method.

e Extensive experiments on real-world few-shot classification tasks
demonstrate the effectiveness of the proposed framework
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