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Introdction (Conventional Tuning)
● Compared with Conventional Tuning, Prompt Tuning has shown much more powerful in 

few-shot learning tasks

● Prompt-based tuning includes three key points: Template design, Verbalizer design
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Introdction (Prompt-based tuning)
● Compared with Conventional Tuning, Prompt Tuning has shown much more powerful in few-shot 

learning tasks

● Prompt-based tuning includes three key points: Template design, Verbalizer design
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Motivation

● Conventional augmentation: methods focus on  constructing more instance .

● PromptDA: propose to construct instance- label pair(fuse label semantics into 
augmentation) 
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Method:Label Augmentation

 A Set                                  of label word of      

denote the one-to-multiple verbalizer that maps each label category 
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Label Augmentation:label word candidates
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Label Augmentation:Verbalizer candidates
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Label Augmentation:Final Verbalizer 
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Find top -n assignment using Dtrain Final one-to-multiple verbalizer

verbalizer candidate with the highest accuracy score



Augmented Prompt-based Tuning
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Instance-label pairs training label pairs



Augmented Prompt-based Tuning
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Instance-label pairs training label pairs
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 Prediction Transformation
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 Prediction Transformation
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The final  probability of each class: 
h = max()



 Prediction Transformation
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Exepriment
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Exepriment:Research Question

● RQ1 Can PROMPTDA improve the performance of few-shot prompt-based 
tuning? 

●  RQ2 Can the proposed Label Augmentation strategy help the target label 
prediction?

● RQ3 Can the PROMPTDA make the promptbased tuning method more stable?
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Exepriment:BaseLine Details

● Majority: The label is predicted by taking the majority class in the training set

● Fine-Tuning: Prediction is based on the pre-trained language model

● GPT-3:In-context tuning in the zero-shot setting

● EFL(Entailment as Few-Shot Learner):  An entailmentbased prompt tuning framework

● LM-BFF:A prompt tuning model that automatically searches for demonstrations, 
templates and label words

● Prompt Tuning:The standard Prompt-based Tuning augmented by a simple template or 
template-free 20
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Exepriment:Data Set Detail

● SST-2:Sentiment Analysis on SST-2 Binary classification

● MR:  The Rotten Tomatoes movie review dataset 

● CR:   Mining-and-Summarising-Customer-Review (give    positive    or negative  
opinions)

● Subj:  Movie review data set is objective or  subjective

● Cola:  The Corpus of Linguistic Acceptability(include domain or out domain data )

● MPQA:  Data-set annotated for opinions and other private states(i.e., beliefs, 
emotions, sentiments, speculations, etc.)
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Exepriment:Performance 

● PROMPTDA can  improve the performance of few-shot prompt-based tuning(Q1)
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Exepriment:Performance 

● Automatic Label Augmentation outperforms the manual way.(Q2)

● † template augmented:manually choose “Itis [MASK]"
● ‡ template-free: only append “[MASK]"

● (au.): automatic label augmentation,this paper proposed 
● (m.): manual label augmentation,find the synonyms of label name from dictionary
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Exepriment:Performance 

● PROMPTDA makes the prompt-based tuning more stable (less variance).(Q3)

‡ template-free: only append “[MASK]"
† template augmented:manually choose “Itis [MASK]"
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Expriment:Combine Conventional DA

● Combination with conventional DA can bring additional improvements,
which suggests PROMPTDA can be regarded as orthogonal to conventional DA

● Conventional DA:Select synonym substitution method 
● Enlarge the training set by ×2

● PROMPT DA :This paper propose
● Enlarge the training set by ×3
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Exepriment:Label Word Selection
● SST-2: The label words automatically manually searched are literally similar.

● Subj :the label name {objective/subjective}, not literally similar.
computer don’t know what is the object & subject word 

● SST-5:harder to select appropriate label words(Performance bad) 
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Key word is literally same
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Exepriment:Label Word Selection
● SST-2: The label words automatically manually searched are literally similar.

● Subj :the label name {objective/subjective}, not literally similar.
computer don’t know what is the object & subject word 

● SST-5: harder to select appropriate label words(Performance bad) 
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Hard to split out neutral ,negative and very negative
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● A new problem of designing data augmentation strategies for 
prompt-based few-shot learners.

● Label-guided data augmentation framework PROMPTDA that exploits the 
rich label semantic information of one-to-multiple verbalizer for improving 
prompt tuning, which can be a plug-in module for any  prompt-based 
method.

● Extensive experiments on real-world few-shot classification tasks
demonstrate the effectiveness of the proposed framework

Conclusion
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